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Abstract. Differential cross sections for neutron and x-ray scattering have been detived for the
orientationally disordered phase of solid Cgp. Interaction centres are placed at nuclei and at the
centres of interatomic bonds. Bragg and diffuse scattering cross sections, for single crystals and
for powders, are formulated using symmeitry-adapted rotator functions. Thermal averages are
calculated taking account of crystal field effects. Thermally averaged orientational distribution
functions have also been calculated,

1. Introduction

Ceo-fullerite is an unusual molecular crystal (Kriitschmer et gl 1990) which undergoes a
phase change at about 255 K (Dworkin er al 1991, Heiney et o 1991), from a high-
temperature face-centred cubic (FCC) structure (Fleming et a/ 1991) with orientational
molecular disorder (Yannoni et al 1991, Tycko er al 1991, Neumann et @l 1992), to a
low-temperature Pa3 structure where the molecules are differently oriented on four simple
cubic sublattices (Sachidanandam and Harris 1991, David et ¢! 1991). An understanding
of diffraction experiments on this material requires a detailed theoretical description of its
various scattering cross sections, taking into account the orientational degrees of freedom
of the Cgp molecule. .

Origntation-dependent properties of molecular crystals are best formulated in terms of
symmetry-adapted multipolar rotator functions. In this way the symmetries of the molecule
and of the crystalline site are fully incorporated. Rotator functions were first introduced
by James and Keenan (1959) in formulating a theory of the phase transitions in solid CDy.
Press and Hiiller (1973) and Press (1973) used and extended these concepts in presenting
a method for the analysis of orientational structure in molecular solids. A general method
of constructing rotator functions, taking full advantage of group theory, was subsequently
described by Yvinec and Pick (1980), while Michel and Parlinski (1985) formulated a
general method of calculating the free energy of orientationally disordered crystals on the
basis of atom-atom intermolecular potentials. Due to the high symmetry of the Cgy molecule
and the complexity of the molecular structure, a theoretical description of the macroscopic
properties of solid Cgo, on the basis of a mictoscopic theory, is a significant challenge.

In a recent theoretical study of the orientationally disordered phase and the phase
transition in solid Cgy (Michel ef @l 1992), orientational ordering is described using
molecular and site symmetry adapted rotator functions belonging to the manifolds £ =
6 and £ = 10. The active mode with £ = 10 is found to dominate, and the relevant rotator
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functions form a basis of irreducible T, representations of the cubic site group. The fact
that the only orientational modes that occur are those with £ = 6, 10, 12... is a consequence
of the very high symmetry of the Cg molecule, that of a truncated icosahedron (Kroto
et al 1985). In the aforementioned microscopic theory, the Cgy molecule was treated as
a rigid structure with interaction centres located at the sites of the sixty carbon atoms.
Analysis of low-temperature (T) structural data suggests that the so-called double bonds
that fuse adjacent hexagons on a molecule act as repulsive centres of interaction between
neighbouring molecules (David er af 1991). This idea has been implemented in molecular
dynamics calculations (Sprik er af 1992) where the inclusion of double bonds is found
to be necessary to stabilize the observed cubic low-T structure. The microscopic theory
has recently been extended to the case of a more complex molecular structure (Michel
1992a) in which interaction centres are located not only at atoms but at the centres of
both double and ‘single’ bonds. The latter bonds fuse a pentagon and a hexagon and their
importance was recently emphasized (Zhang et af 1991, Saito and Oshiyama 1991). The
set of rotator functions used by Michel er af (1992) is sufficient to describe crientation-
dependent properties in the case of the more complex molecular structure. In comparison
with the atomic model, molecular interactions are modified, but the basic form of the theory
remains unchanged. In the present work we assume the more complex molecular structure.

Given the connection between molecular structure and orientation-dependent interac-
tions, it is important to extend the formulation of differential scattering cross sections to
the case of a complex molecular structure. In this paper we derive cross sections for both
neutrons and x-rays; whereas neutrons couple to nuclei, x-rays interact with the electronic
structure of the molecule. An interpretation of the observed differential scattering cross
sections should therefore provide useful information about the molecular structure. In the
following we derive expressions for the Bragg and diffuse scattering cross sections and for
the nuclear and electronic orientational density distribution functions. The thermal averages
entering these experiraentally measurable quantities are related to the microscopic interac-
tion potentials, in particular to the crystal field in the orientationally disordered phase. This
work extends the results of previous work on molecular liquids (Sears 1966, Lovesey 1984),
and on molecular crystals (Yvinec and Pick 1980, Seymour and Pryor 1970, Rowe et al
1973, Press and Hiiller 1973), in which small molecules have generally been considered.

Previously the orientational part of the scattering length density and the rotational
structure factor were expanded in terms of symmetry-adapted functions, taking into account
the symmetry of the molecule and of the site within the crystal. Up to now the expansion
coefficients have been obtained as temperature-dependeni empirical parameters. In the
present paper the expansion coefficients are related to the molecular interaction potential.
This formulation should be very useful to test new theoretical concepts against experiment.
It is particularly needed in the case of solid Cgg, where the electronic structure of the
molecule is related to orientational properties.

2. Molecular structure factor

We consider a crystal which consists of N rigid molecules with centres rigidly located at
FCC lattice sites X(n),n = 1 — N. Molecules may rotate about their centres of mass,
but we exclude inter- and intra-molecular vibrations. Each molecule is represented by sixty
atom cenires, thirty double-bond centres, and sixty single-bond centres. Centres are labelled

v4, where A = a, b and s denotes atoms, double bonds, and single bonds respectively and
the number of centres of type A is denoted Ny; vy = 1,.Na, with IV, = 60, Ny = 30, and
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N, = 60. The position of the centre v, belonging to the molecule at lattice site rz is written
X, va)=X(n) +d(n,vy) 2.1

where the direction of d{n, v4), for a given molecule 5, is described by rwo polar angles
$2(va) = (B(va), #(va)), and the length of the vector d(n, vs) is da.

2.1. Molecular and site symmetries

We start with a molecule in its *standard’ orientation, such that three of its twofold axes
coincide with the three cubic axes of the crystal as shown in figure 1, and we introduce
coefficients

cft =) Y (R(wa)) (2.2)

where ¥['(S2) are spherical harmonics, defined according to Bradley and Cracknell (1972)
and Altmann and Cracknell (1965). Molecular symmetry implies that the only non-zero
coefficients c;“" are those with £ = 0, 6, 10, 12, ... and that all coefficients with odd n are
identically zero. Coefficients for bond centres are related to coefficients for atomic sites by
the equations (Michel 1992a)

cf® = e : @2.3)
and o

=g | e
where &, and £, are numerical constants, independent of n.

We now consider molecular symmetry-adapted functions appropriate to the identity
representation of molecules with icosahedral (I) symmetry (such as Csg),

£
Shp (@) = h Y (@) @.5)

n=—t¢

which have orthonormalized coefficients

@ = ci* /gl : 2.6)

gl = [Y (c3*). @7

We regard the latter quantity as a ‘molecular shape factor® (it is sometimes called a
‘molecular form factor’), since it follows from equations {2.2), (2.5), and (2.6) that

where

gl = SAnIQa) 2.8)
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Figare 1. A Cgp molecule is shown in its *standard’ orentation. Molecular twofold axes lie
along the Cartesian x, y and z directions. ‘Single’ and ‘double’ bonds are shown as fine and
bold lines respectively. An equivalent (but distinct) ‘standard’ orientation is obtained if the
molecule is rotated through 90> about one of the Cartesian axes.

Using the well-known identity

Y ReIRe] = o

Pefcos(a,, )] 29

where @,,,, is the angle between the directions §(v4) and Q(v}), we also find that

2641
@ = T2 S Pcos@u)] 2.10)

PRTA

This result is used in section 3.
Calculated values of gf, for £ = 6, 10, and 12, and for three different models of the

structure of the Cgq molecule, are given in table 1; note that g(,‘ = Nu/+/4x. Equations (2.3},
(2.4), and (2.7) imply that

g = |Edlg] @.11)

and that

g = telgl. (2.12)
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Table 1. Caleulated values of the molecular shape factors g, for three models of the structure of
a Cgo molecule, In models 1 and 2, atoms are placed at the vertices of a truncated icosahedron,
In modet 1 all bond distances ate the same but in maodel 2 the tatio of *single’ to ‘double’ bond
distances is 1.45:1.40. In model 3 atoms are located according to table 1 of David er al (1991);
these atom positions do not strictly satisfy icosahedral symmetry.

Model 1 Model 2 Model 3

28 319 2.56 243
g, 1889 19.35 19.46
25 8.85 7.89 7.67
gt 6.33 6.33 6.33
g, 1375 13.75 13.74
PIA 1754 17.54 17.53
& 12.00 11.39 .24
£ 420 4.37 441
g, 2364 24.08 24.16

Thus, using equation (2.6), we obtain

&ty = sgnr)al, @2.13)
and

agny = sgn(dedegyy (2.14)

with sgn(§e) = —1, sgn{€ip) = +1, sgn(€iz) = —1, sgn(&) = +1, sgn(§y) = +1, and
sgn{s12) = 1. These relationships will shortly be used to simplify our expression for the
molecular structure factor. '

To describe orientational fluctuations at a site with average cubic symmetry we now
introduce site symmetry adapted functions (Bradley and Cracknell 1972, Alunann and
Cracknell 1965):

[4
Si =Y oY), (2.15)

m=—£€

Here the index t represents the combination (T, u, i), where I" denotes the irreducible
representation of the site cubic group Oy, p distingnishes between representations that
occur more than once withir a given manifold, and i labels rows of the representation;
the coefficients «;'" are tabulated by Bradley and Cracknell (1972) and by Altmann and
Cracknell (1965).

A rotation from the standard orientation {Q2(v4)} to an arbitrary molecular orientation
{§2'(va)} may be described by the Euler angles w. It is then found from equation (2.15),
using equations (2.6) and (2.8}, that

3 S19' )] = g Ui (@) (2.16)
ba

where rotator functions for centres of type A read

Uit @) = Y el D™ (@)og™ @.17)

nn
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and Dy™(w) are the Wigner matrices which govern the transformation of spherical harmonics
under rotation. It follows from the proportionality of the coefficients “?(n* expressed in
equations (2.13) and (2.14), that orientation-dependent guantities (when the Cgo molecule
is treated as a rigid body with atoms, double-bond centres and single-bond centres as
constituting elements) can be described by a single set of rotator functions which take into
account both the molecule’s symmetry and that of the molecular site within the crystal.

2.2, Scattering cross sections

We will now apply these concepts to a formulation of the differential scattering cross section
per unit solid angle Qg (or “scattering law’) (Lovesey 1984),

dg =20 2 paowlepliQ [X(n,va) - X' v} (218)
Q

R AA va vy

where 7€) is the momentum transferred in the scattering process, p4 is the (identical)
scattering length for centres of type A, and angle brackets denote a thermal average. In the
case of neutron scattering py = Ac, the scattering length of carbon (which is independent
of (}), whereas pp, = p; = 0. For x-rays all centres contribute so that p,, g, and p; are in
- general non-zero, decreasing with increasing |Q}; at @ = 0, p4 = zar., where z, is the
charge at a site of type A in units of the electronic charge, and r, is the classical electron
radius.
The total differential scattering cross section, equation (2.18), may be rewritten

Zexm-Q [X(n) — X ) (FAQF4@)) 2.19)

AA

where the molecular structure factor is given by

Fa@) = pa ) _expliQ - d(m, vy)}. (2.20)

This expression is an extension to a complex molecular structure of the rotational structure
factor described by Press and Hiiller (1973), Seymour and Pryor (1970), and Rowe et al
(1973).

Foliowing the procedure of Pick and Yvinec (1980) we now expand the molecular
structure factor in terms of molecular rotator functions and obtain

FA(Q) = dmps ) Y je(Qda)ited S; (QQ)UFA(m) 2.21)
[4 T

where jr denotes a Bessel function, and the argument of U7 stands for w(n). Note that (for
a centrosymmetric molecule such as Cgp) FA(Q) is real, and therefore F2(Q) = FA(—Q),
since the allowed values of £ are all even.

The task of computmg molecular structure factors F/A(Q) is considerably simplified
because the coefficients e}, are proportional to one another for different A. All of the
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structure factors can therefore be written in terms of ‘atomic’ rotator functions U7°; from
now on we shall drop the superscript a. From equation (2.21) we obtain

FAQ = 4n YY" o} je(QdnitS; QU () (222)

[4

where

pf = pasgn(&gd (2.23)

and we have introduced the conventions &% = 1, §f = &, and &f = &,.

3. Differential scattering cross sections

Having expressed the molecuiar structure factor F,f(Q) in terms of rotator functions
{equation (2.22)), we now take advantage of symmetry to obtain various contributions to
the total differential scattering cross section. Equation (2.19) may be rewritten as the sum
of two terms:

do/dRq = (do/dq)Is + (do/dQq)la (3.1)

where the subscripts B and d denote Bragg and diffuse scattering cross sections respectively.
The Bragg term is
)

do

a-s-z—q— (3.2)

which reduces to

2
do

N(ZJI)
Tl ZS(Q G)

(3.3)

(Q))

where G is a reciprocal lattice vector and V, is the volume of the primitive unit cell. The
remaining diffuse term may be broken into a single-molecule “self’ component

do
d2g

=N Y [(FQF Q) ~ FRQUFE QY] 64

d,self A A
which is independent of n, and a “distinct’ component

do
dS2g

=YY expli@ - (X (m) - X(n')) Z[(F”(Q) (~Q))

ddist  m nign AA

- <F,;‘(Q)><F,:'(—Q)>] (3.5)
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associated with orientational correlations between molecules at different sites,

In order to proceed we need to calculate the thermal averages which appear in
equations {3.3)-(3.5). The intermolecular potential may be written as the sum of a rotation—
rotation interaction term which is quadratic in the rotator functions U;, and a crystal field
term which is linear in these functions. In actual calculations the potential is treated within
the molecular field approximation. In the disordered phase the single-particle potential at any
molecular site then reduces to the crystal ficld potential, which has full cubic symmetry (i.e.
' = Ay, the unit representation), and can therefore be expanded in cubic rotator functions
(Michel er al 1992a). For £ > 12 there is more than one A;, representation and we shall
use the symbol 15, to denote the combination (A, 1); w labels the A, representations.
The expansion of the crystal field now reads (writing n for w(n))

Vep(n) = Z 3w U () (3.6)

Tig

where the coefficients are calculated from microscopic theory. For a complex molecular
structure with several types of interaction centre they may be written as

wpt =12 v;p “gleg sen(ed). )
AA

The definition of the quantity v v * follows from equation (3.17) of Michel (1992a).
The thermal average of a function ®(w) is defined by

(© =27 [ 400 expl—Ver(@)/T) (3.8
where the partition function

2= [ dwexpl—Verte)/T. (3.9
It follows that

(U7 = 8y, (U™ (3.10)
50 that

(FAQ@) =4n 33 of je( QAR Q) UL, G.11)

¢y

Note that in this and subsequent equations the function S;"(Q) is replaced by the well
known cubic harmonic K "*($2) (von der Lage and Bethe 1947, Bradley and Cracknell
1972, Altmann and Cracknell 1965). Since the crystal field has cubic symmetry, we apply
a group theoretical matrix element theorem (Tinkham 1964) to obtain

WM UGHTY = dppdie (UL U (3.12)
50 that
FR@FY Q=162 ) Y 33" pf o ju(Qda)je(Qda)
e T oppt 0

x ST (QQ)SEH QiU Ul Y. (3.13)
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3.1. Bragg scattering

The Bragg scattering intensity for a single crystal is readily obtained by substituting
equation (3.11) into equation (3.3), The result is that ’

do
d2g |

(2”) ZS(Q &) (.14)

2
a3 N EKHQQUU™M Y of i Qd,)] -
A

£ Ty

Whether or not single crystals are available, useful structural information can also
be obtained from powder samples, in which the scattered intensity is averaged over all
directions of Q. We shall denote powder averages by an overbar, i.e.,

F(Qq)= ——fdﬂq f(&q) (3.15)

where f(£g) represents any function which depends on the direction of Q. The powder-
averaged Bragg scattering intensity is then

do (z:r) o o
3al, > =g ) 1K @™ oot iwodn| 316
which reduces, in the absence of a crystal {ield, to
da- Ver=0 3 NQ@r)? Z 80 - G) E 0 2 o
dQqly V. ~ G? . Po Jollaa) | . .

This expression accounts well for the observed Bragg intensities in room-temperature x-ray
and neutron powder diffraction experiments on Cgsg (Hemey et al 1991, Fischer e ! 1991,
Copley et al 1992ab); in the case of neutron scattering of = (60Ac/v47)8a,q. Notice
that one should not conclude from these experiments that the crystal field is strictly zero.
Indeed recent singte-crystal x-ray diffraction experiments (Chow et al 1992) conclusively
show that the distribution of orientations of Cg molecules in the disordered phase is not
completely spherical.

3.2. Diffuse scattering
Inserting equations (3.11) and (3.13) into equation (3.4), we find that

do
dQq

=167°NY ' 3 ot of je(Qda) je(Qdw) [ "Ny Z 5" ()8 (@)

d,self 6Lt AN

(U7 UR") =10 3 K @)K @)U U >}- (3.18)

!

The prime on the sum over £ and £ indicates that the £ = £ = 0 term is omitted; this
term vanishes because Ug(w) = dr.4,,. All thermal averages in equation (3.18) refer to a
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single molecular site, and translational invariance of the crystal implies that all sites are
equivalent. Equation (3.18) is a very general formulation of the single-molecule diffuse
differential scattering cross section in an orientationally disordered single crystal.

Since the site symmetry adapted functions S; are orthonormalized, we obtain from
equation (3.18) that the powder-averaged single-molecule diffuse scattering intensity is

do

dSq

2
=4zN Y lZ«U:ﬁ = Z<U§">2} [Zpé‘je(QdA)] : (3.19)
A

d.self LE U Tig

The temperature dependence of this scattering is determined by the strength of the crystal
field (see equation (3.8)).

In the absence of a crystal field, the orthogonality of the rotator functions implies that
(U,") = 0 for £ 0, and that

(U oo = 1726+ 1). (3.20)
Since there are 2¢ + 1 components of 7 for a given manifold ¢, equation (3.19) reduces to

do |%e=

ds2g

2
=4nNZ[Zpé‘je(Qda)] - (3.21)
7o L A

d.self
Using equation (2.23) this expression may be rewritten as follows:

Ver=0

do_
Qg

d,self

2
=4z N Z {Z P4 sgn(EgA)je(QdA)g?] . (3.22)
£30 A

In the case of x-rays all scattering centres contribute, but for neutrons the only interaction
is with nuclei and ps = 8,4 oAc. In this case, using equation (2.10), we find that

Yer=0

= NAZ Y (2L + 1)j}Qd) Y Prlcos(oyy)l. (3.23)

d,self €70 T

do
g

This is the diffuse neutron differential scattering cross section in the absence of a crystal
field (see also Neumann et al 1992, Copley et al 1992a).

We now turn to the “distinct’ diffuse term, equation (3.5). The principal contributions to
this scattering arise from order parameter fluctuations which build up as the phase transition
is approached from above. In view of previous work (Michel ef a! 1992) we shall restrict
our attention to the three components of the dominant T, mode belonging to the manifold
£ = 10. The following discussion also holds for Ty, modes belonging to the manifold £ =
6, and can be extended to linear combinations of Ty, modes with £ =6 and £ = 10. In
the disordered phase {U/;*) = 0 so that only the ‘correlated’ part of equation (3.5) remains.
The leading contribution to the ‘distinct’ term is therefore given by

do
dQq

d.dist

2
= 16mN [Z p{‘um(QdA)} Y S Q)SQNUi(@UL(-).  (3.24)
A Lj
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Here U{ﬂ(q) are the Fourier transforms of the order parameter variables, the indices / and
J refer to the three components of the dominant Toy representation, and ¢ = @ — G.

The correlation function in equation (3.24) is related to the collective order parameter
susceptibility x(g) by

U@V T™" = x"(g) (3.25)
with (Michel 1992b)

X(@ = xp [T + x5 (@)™, (326)
Here J{g) is a 3 x 3 interaction matrix and x}ﬁ’ is the single-particle expectation value

2 = (WUinH. (3.27)

The interaction matrix J{(g) becomes diagonal and has its maximum negative eigenvalue at
the X point of the Brillouin zone, i.e. for ¢ = kX, Here k* stands for any of the vectors
kf ={27/2,0,0), k;f = (0, 2n/a,0), and k¥ = (0, 0, 27 /a), where a is the crystal lattice
constant. Explicitly we find that

yCyz +a(Cyy + Cx)') ’ "ﬁSxy —B58.x 7
J(gqy=4 =Sy yCou + a(cxy + Cyy) -8y, (3.28)
_ﬁsz: —ﬁSyz J’C;y + (!(Cyz + Cyp)

where C;; = cos(g;a/2) cos(g;a/2) and S;; = sin(g;a/2)sin(g;a/2). The quantities @, B
and y in equation (3.28) were originally determined by numerical calculation for the case
of atom-atom Lennard—Jones potentiais between nearest-neighbour molecules (Michel et af
1992). Extension of the theory to a more complex structure, including double- and single-
bond interactions as well as Coulomb interactions within a distribution of electronic charges,
shows that the struciure of the matrix J(g) is unaltered (Michel 1992a). Depending on the
strengths of the various interactions the coefficients ¢, 8 and y take different values, but in
all cases ¥ >» «, 8. The structure of the matrix J(g) is the same for To; modes belonging
to the manifold ¢ = 6.

4, Orientational distribution functions

Orientational density distribution functions can in principle be determined in diffraction
experiments (Press and Hiiller 1973, Seymour and Pryor 1970, Rowe et al 1973). Neutron
diffraction data can be analysed to yield information regarding the thermal average of the
instanianeous orientationai distribution function for nuclei, which may be written (Michel
and Parlinski 1985) as

frwy=) ") gtUs (w)SF(S) @1
[ 1 :

where € is the direction of observation, the instantaneous orientation of the molecule is
described by Euler angles w, and the superscript n denotes nuclear density. This expression
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generalizes an earlier formulation of the scattering length density which was expanded in
terms of cubic rotator functions (Press and Hiiller 1973). The thermally averaged distribution
function is then given by

) = (£S5 o)) 4.2)

Using equation (3.10) we obtain

FOED I I (1) 43)
£ Ty
where
Yot = gt {U,"). (4.4)

Since Ky = 1/+/4 and g2 = 60/+/4xm, the first term in equation (4.3) is simply 60/4x. The
coefficients ¥, * can be determined from neutron diffraction experiments since the thermal
averages (U, ") appear in the Bragg differential scattering cross section, equations (3.14)
and (3.16). On the other hand they can also be calculated if the crystal field, equation (3.6),
is obtained from a theoretical model.

We now consider the thermally averaged electron density distribution function, which
is relevant to the analysis of x-ray experiments, and we start with the charge distribution
for 2 molecule in its standard orientation (figure 1):

Do Q- =Y DY zaSiIRA)IS(S). 4.5)
Ay A

[LFY £.r

Applying the rotation operation £2'(v,) = R{w)$2(v4), we obtain the instantaneous charge
distribution function

FRw) =) Y a3 — 2 0a) (.6)
A vy

where the stperscript e denotes electron density. Using concepts developed in section 2 we
find that

Fr @) =) 2 Uf ()55 (Q) 4.7)
A &r
where
78 = 24 sgn(sM e (4.8)

is the “electron molecular shape factor’ for sites of type A (cf equation (2.23)). The thermally
averaged electron density distribution is then

FE@ =" v MK 49
[4

Tig
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where

y;’f[g — ZZ:(U;IS}‘ . (4.10) :
A

The first term in the expansion of £°(S2), equation (4.9), is ¥_ z4aNa/4w = 360/4r, since
there are six electrons per atom of carbon.

Our formulation of the thermally averaged nuclear and electronic density distributions,
™) and f°(£2), enables their calculation for a specific microscopic potential model,
but in practice our current (first-principles} understanding of the intermolecular potential
is still somewhat incomplete. Molecular dynamics calculations (Cheng and Klein 1992)
and energy minimization calculations (Guo er al 1991} have shown that Lennard—Jones
potentials based on atom-atom interactions alone result in non-cubic lattice structures at
low temperature. (This shortcoming has been avoided in the analytical theory (Michel ez a!
1992) by restricting attention to a rigid lattice structure and only allowing the Cgy molecule
to have orientational degrees of freedom.) Foliowing molecular dynamics calculations with
improved potentials {(Sprik et al 1992), it is now commonly accepted that the inciusion of
double bonds as repulsive interaction centres (David er af 1991} ensures that the low-T
structure is cubic. The electronic charge distribution of the molecule, which contributes an
electrostatic multipole component to the intermolecular potential, may also be taken into
account (Lu ef al 1992). It has recently been shown (Michel 1992a) that the theory can
be extended to intermolecular potentials associated with a complex molecular structure.
Application of the extended theory to various models of the molecular structure shows that
numerical values of the muoltipolar intermolecular interaction constants and of the crystal
field coefficients depend strongly o details of the molecular structure such as the distribution
of electric charge among bonds and atoms, and the location and strength of Lennard-
Jones interactions. Given the inherent uncertainties in this parametrization of the molecular
structure, we prefer here not to use a particular molecular model but rather to discuss the
dependence of f"(£2) on parameters of the crystal field itseif. By parametrizing the crystai
field we obtain results which can be compared with the results of experiments. Such an
analysis provides information which can in tum be used to improve our description of the
molecular interaction potential.

We have numerically calculated the coefficients y;' ™ for various choices of the crystal
field parameters w, and wyp in equation (3.6), using equation (3.8) to calculate the thermal
averages entering equation (4.4). Representative results are shown in table 2 and in figure 2,
expressed in terms of the dimensionless variables w; = w¢/T (£ = 6 and 10). To a good
approximation we find that pf decreases linearly with increasing i, and is relatively
insensitive to @W)o. On the other hand y}, is mostly quadratic in s, and increases with
decreasing 9. The behaviour of the coefficients in equation (4.3) is such that f™(£2)
becomes more isotropic as the temperature is increased. Very similar conclusions apply to
i and to f°(S2), since z}, equation (4.8), is dominated by the contribution from atomic
centres,

In figure 3 we show the dependence of (2}, e.g. f(&) or f°(£2), on the corresponding
coefficients ¥ and yyo. The orientational density distribution is clearly deficient close to
the (111) direction when ys is negative and yq is positive. Furthermore the density in the
(110} direction depends on ¥ but is almost independent of yq0. Scattering experiments
provide important information about the coefficients 3, information which in turn improves
our understanding of the intermolecular potential.
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Table 2. The coefficients y{ and yf},, calculated for the indicated values of the dimensionless
parameters fg = we/ T and ib)p = wip/T. Note that y§ = 60/v4r = 16.926.

iig e v Vi
—40 =04 .64 1.53

0.0 0.62 1.31
0.4 0.59 1.04

~20 =04 0.38 0.73
0.0 0.36 0.43
04 0.34 0.13

0.0 =04 0.00 0.38
0.0 0.00 0.00
0.4 0.00 -0.36

20 —04 041 1.05
00 -0.38 0.51
04 =036 -~0.02

40 -04 =072 2.50
00 -0.68 1,79
0.4 064 1.14

The crystal field coefficient ws is sensitive to certain aspects of our model of the

molecular interaction potential. From equation (3.7) we obtain the result, for £ = 6 or 12,
that

wy* = (360/var ) 280 o™ — givio " + 28l + (8 — 280wy + 20ef +8Dvio
+ (g5 —28Dvig el. (4.11)

(The same expression holds for £ = 10, except that all signs are positive.) Inserting numerical
values of the molecular shape factors gg“ from table 1 (model 2), we find that

3
we = %)[5.1 v30 — 6.33vEh + 22.78v%, — 10.10v%5 + 27.90v%5 — 1.27v85];  (4.12)

the superscript T, is dropped because there is only one A;, representation for £ = 6.
Since the Cgp molecule is electricaily neutral, Coulomb interactions do not contribute to
the crystal field. Furthermore the Lennard-Jones potential is such that all elements v/
have the same (negative) sign. Thus wg is always negative in the absence of double-bond
interaction centres whereas such centres give a positive contribution to ws because of the
negative signs in equation (4.11). In the absence of single-bond centres, and under the
plausible assumption (Sprik et al 1992) that double-bond cenires contribute strongly to the
repulsive interaction, the latter centres cause wg to be positive. Since single-bond centres
always produce a negative contribution to wg, we see that the sign of we largely depends
on the interplay between double- and single-bond centre interactions. The coefficients vg‘é“'
are very sensitive to parameters of the corresponding Lennard-Jones potentials. On the
other hand we find that for all models studied, and for all plausible choices of potential
parameters, whg is negative.

Recently Chow er al (1992) have measured x-ray Bragg peak intensities in a single
crystal of Cgo at 300 K. The measurements were analysed to extract the coefficients ¥, *
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Figure 2, The coefficients ' and p|j, plotted as a function of iy = wg/T for the following
values of g = une/T: =04, =0.2, 0, 0.2, and 0.4.

in the expansion of the electron orientational distribution function, equation (4.9). It was
~ found that ¢ is negative, which suggests that the coefficient ws in the effective crystal field
potential is positive, confirming the importance of double-bond centres in our model of the
intermolecular potential. With wy < 0 and wg > 0, we deduce from figure 2 that yyp is
positive, in agreement with Chow ef al (1992).

5. Concluding remarks

Using the formalism of molecular and site symmetry adapted rotator functions, we have
derived expressions for differential cross sections for neuwtron and x-ray scattering in the
orientationally disordered phase of solid Cg. We have given expressions for Bragg
scattering and diffuse scattering for the cases of single crystals and powder samples. The
single-particle orientational distribution function has been discussed, and the dependence of
its first two coefficients on crystal field parameters has been examined.

We have restricted our treatment to orientational degrees of freedom and have assumed
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Figure 3. Plots of the normalized orientational distribution function, (47/60) £(£2), for four
choices of the coeffictents y¢: o = 60/v3x. Full curve, yg = —0.4, yip = 0.0; dotted curve,
vs = +0.4, yip = 0.0; broken curve, y5 = 0.0, y19 = -0.4; chain curve, ps = 0.0, ¥ig = +0.4.
The function is plotted in the {1 10] plane as a function of the polar angle 8, with ¢ = 45°,
The crystallographic directions (001), (111) and (110) comespond to & = 0°, 54.7° and 90°
respectively.

that molecular centres lie on a rigid lattice, This assumption is certainly justified as a first
approximation. Indeed at the X point of the Brillouin zone there is no coupling between
acoustic lattice displacements and orientational order parameter fluctuations. (Acoustic
lattice disptacements couple to the square of the Ty, order parameter fluctuations (Lamoen
and Michel 1993), causing the cubic cell constant to contract at the first-order phase
transition (David et al 1992, Heiney ef al 1992).) The absence of bilinear coupling
implies that we do not need to include mixed translation—rotation correlation functions
in the scattering cross sections.

As we have pointed out in section 4, the orientational distribution function in the
disordered phase of Ceo is determined by the coefficients w;® of the crystal field. We
have given expressions for w,"* in terms of the distribution and sirength of the jnteraction
centres of the molecule. Since our knowledge in this matter is somewhat incomplete,
ab initio calculations of the electronic structure of the molecule should help to provide a
more reliable parametrization of the intermolecular potential. However even at present our
analysis indicates that doubie-bond interaction centres, which were initially introduced to
explain structural data at low temperature (David er a! 1991), play an important role in
determining the orientational distribution in the high-T phase,

There is a fundamental reason why a theoretical calculation of the single-particle
orientational distribution function is an extremely difficult challenge. The field experienced
by a rotating molecule within a crystal actually includes contributions from all degrees
of freedom in the crystal. In particular the self-energy of a rotating molecule in a
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deformable lattice yields important contributions to the effective crystal potential, in addition
to those obtained in the case of a rigid lattice (Michel and Rowe 1985). On the other
hand characteristic properties at phase transitions only depend on a few relevant degrees
of freedom, As a more direct test of theoretical concepts (Michel er af 1992, Michel
1992h), and in particular of expression (3.24), we encourage and look forward to a detailed
investigation of the static collective orientational susceptibility in a single crystal of Cgo at
a temperature close to that of the orientational phase transition.
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