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Abstract. Differential emss sections for neutron and x-ray scattering have teen derived for the 
orientationally disordered phase of solid Q. Interaction centres are placed at nuclei and at the 
centres of interaIOmic bonds Bragg and diffuse scauering cross sections, for single crystals and 
for powders, are formulated using symmetry-adapted rotator functions Thermal averages are 
calculated taking account of crystal field effects. Thermally averaged orientational disbibution 
functions have also been calculated. 

1. Introduction 

C,o-fullerite is an unusual molecular crystal (Kratschmer et a1 1990) which undergoes a 
phase change at about 255 K (Dworkin et a1 1991, Heiney et a1 1991), from a high- 
temperature facececentred cubic (FCC) structure (Fleming et a1 1991) with orientational 
molecular disorder (Yannoni et a1 1991, Tycko et ol 1991, Neumann et ul 1992), to a 
low-temperature Pa3 structure where the molecules are differently oriented on four simple 
cubic sublattices (Sachidanandam and Harris 1991, David et ul 1991). An understanding 
of diffraction experiments on this material requires a detailed theoretical description of its 
various scattering cross sections, taking into account the orientational degrees of freedom 
of the (260 molecule. 

Orientation-dependent properties of molecular crystals are best formulated in terms of 
symmetry-adapted multipolar rotator functions. In this way the symmetries of the molecule 
and of the crystalline site are fully incorporated. Rotator functions were first introduced 
by James and Keenan (1959) in formulating a theory of the phase transitions in solid CD4. 
Press and Huller (1973) and Press (1973) used and extended these concepts in presenting 
a method for the analysis of orientational structure in molecular solids. A general method 
of constructing rotator functions, taking full advantage of group theory, was subsequently 
described by Yvinec and Pick (1980). while Michel and Parlinski (1985) formulated a 
general method of calculating the free energy of orientationally disordered crystals on the 
basis of atom-atom intermolecular potentials. Due to the high symmetry of the Cao molecule 
and the complexity of the molecular structure, a theoretical description of the macroscopic 
properties of solid G, on the basis of a microscopic theory, is a significant challenge. 

In a recent theoretical study of the orientationally disordered phase and the phase 
transition in solid C a  (Michel et al 1992). orientational ordering is described using 
molecular and site symmetry adapted rotator functions belonging to the manifolds l = 
6 and e = IO. The active mode with e = 10 is found to dominate, and the relevant rotator 
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functions form a basis of irreducible Tzg representations of the cubic site group. The fact 
that the only orientational modes that occur are those with 8 = 6, 10, 12... is a consequence 
of the very high symmetry of the CSO molecule, that of a truncated icosahedron (Kroto 
et a1 1985). In the aforementioned microscopic theory, the C ~ O  molecule was treated as 
a rigid structure with interaction centres located at the sites of the sixty carbon atoms. 
Analysis of low-temperature (T) structural data suggests that the socalled double bonds 
that fuse adjacent hexagons on a molecule act as repulsive centres of interaction between 
neighbouring molecules (David er ai 1991). This idea has been implemented in molecular 
dynamics calculations (Sprik et ai 1992) where the inclusion of double bonds is found 
to be necessary to stabilize the observed cubic low-T structure. The microscopic theory 
has recently been extended to the case of a more complex molecular structure (Michel 
1992a) in which interaction centres are located not only at atoms but at the centres of 
both double and ‘single’ bonds. The latter bonds fuse a pentagon and a hexagon and their 
importance was recently emphasized (Zhang et ai 1991, Saito and Oshiyama 1991). The 
set of rotator functions used by Michel er ai (1992) is sufficient to describe orientation- 
dependent properties in the case of the more complex molecular structure. In comparison 
with the atomic model, molecular interactions are modified, but the basic form of the theory 
remains unchanged. In the present work we assume the more complex molecular structure. 

Given the connection between molecular structure and orientation-dependent interac- 
tions, it is important to extend the formulation of differential scattering cross sections to 
the case of a complex molecular structure. In this paper we derive cross sections for both 
neutrons and x-rays; whereas neutrons couple to nuclei, x-rays interact with the electronic 
structure of the molecule. An interpretation of the observed differential scattering cross 
sections should therefore provide useful information about the molecular structure. In the 
following we derive expressions for the Bragg and diffuse scattering cross sections and for 
the nuclear and electronic orientational density distribution functions. The thermal averages 
entering these experimentally measurable quantities are related to the microscopic interac- 
tion potentials, in particular to the crystal field in the orientationally disordered phase. This 
work extends the results of  previous work on molecular liquids (Sears 1966, Lovesey 1984). 
and on molecular crystals (Yvinec and Pick 1980, Seymour and Pryor 1970, Rowe et al 
1973, Press and Huller 1973). in which small molecules have generally been considered 

Previously the orientational part of the scattering length density and the rotational 
structure factor were expanded in terms of symmetry-adapted functions, taking into account 
the symmetry of the molecule and of the site within the crystal. Up to now the expansion 
coefficients have been obtained as temperature-dependent empirical parameters. In the 
present paper the expansion coefficients are related to the molecular interaction potential. 
This formulation should be very useful to test new theoretical concepts against experiment. 
It is particularly needed in the case of solid G. where the electronic structure of the 
molecule is related to orientational properties. 

J R D Copley and K H Michel 

2. Molecular structure factor 

We consider a crystal which consists of N rigid molecules with centres rigidly located at 
FCC lattice sites X ( n ) , n  = 1 - N .  Molecules may rotate about their centres of mass, 
but we exclude inter- and intra-molecular vibrations. Each molecule is represented by sixty 
atom centres, thirty double-bond centres, and sixty single-bond centres. Centres are labelled 
UA, where A = a, b and s denotes atoms, double bonds, and single bonds respectively and 
the number of centres of type A is denoted NA; V A  = ~,..NA, with Na = 60, N b  = 30, and 
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N, = 60. The position of the centre uA belonging to the molecule at lattice site n is written 

(2.1) 

where the direction of d(n,  UA). for a given molecule n. is described by two polar angles 
G!(uA) = ( @ ( U A ) , + ( W A ) ) ,  and the length of the vector d(n, UA) is dA. 

2.1. Molecular and site s y m f r i e s  

We start with a molecule in its 'standard' orientation, such that three of its twofold axes 
coincide with the three cubic axes of the crystal as shown in figure 1, and we introduce 
coefficients 

X ( n ,  UA) = X(nt + d(n, U A )  

where Ya(i2) are spherical harmonics, defined according to Bradley and Cracknell (1972) 
and Altmann and Cracknell (1965). Molecular symmetry implies that the only non-zero 
coefficients cyA are those with t = 0,6,10,12, ... and that all coefficients with odd n are 
identically zero. Coefficients for bond centres are related to coefficients for atomic sites by 
the equations (Michel 1992a) 

.;b = &c;" (2.3) 

and 

(2.4) <"$ - 
t -w;" 

where b and { r  are numerical constants, independent of R. 

representation of molecules with icosahedral (I) symmetry (such as GO), 
We now consider molecular symmetry-adapted functions appropriate to the identity 

n=-e 

which have orthonormalized coefficients 

where 

8: = /F. 
We regard the latter quantity as a 'molecular shape factor' (it is sometimes called a 
'molecular form factor'), since it foUows from equations (2.2). (2.5). and (2.6) that 

d = ~ S ~ I ) [ ~ ( v A ) l .  ( 2 8 )  
U" 
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Figure 1. A & molecule is shown in its ‘standard’ orientation. Molecular twofold axes lie 
along the Canesian x. y and 2 directions. ‘Si&’ and ’double’ bonds are shown as fine and 
bold lines respeclively. An equivalent (but distinct) ‘standard’ orientation is obtained if tk 
molecule is mtated h u g h  90e about OM of the Canesian axes. 

Using the well-known identity 

where CY,,,.; is the angle between the directions s2(u,,) and s2(u‘J, we also find that 

(2.10) 

This result is used in section 3. 

structure of the 
(2.4). and (27) imply that 

Calculated values of gf, for e = 6.10, and 12, and for three different models of the 
molecule, are given in table 1; note that g{ = NA/.&. Equations (2.3). 

and that 
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Table 1. Calculated values of the molecular shape factors gf,  for Wee models of Ihe shuchue of 
a CM molecule. In models 1 and 2, atoms are placed at the vertices of a " t e d  icosahedron. 
In model 1 all bond distances are the same but in madel 2 Ihe ratio of 'single' to 'double' bond 
distances is 1.451.40. In model 3 m m s  M located according to &bk I of David bol  (1991); 
these alom positions do not strictly satisfy iwsahedral symmeby. 

Model 1 Model2 Model3 

8; 3.19 2.56 2.43 
gy,, 18.89 19.35 19.46 
nL 8.85 7.89 7.61 
& 6.33 6.33 633 
gi, 13.75 13.75 13.74 
812 17.54 17.54 17.53 
g; 12.00 11.39 11 .24  
8" 4.20 4.31 4.41 
e:. 23.64 24.08 24.16 

Thus, using equation (2.6). we obtain 

( ( 1 1  - - sgMte )4& (2.13) 

and 

4:l) = s g n ( W &  (2.14) 

W i t h  sgn(C6) = -1 ,  S ! @ ( t ~ o )  = fl. S p ( 6 1 z )  = -1, s@(c6) = +I, Sfl(C10) = +I, and 
sgn(<tz) = +I.  These relationships will shortly be used to simplify ow expression for the 
molecular structure factor. 

To describe orientational fluctuations at a site with average cubic symmehy we now 
introduce sire symmetry adapted functions (Bradley and Crachell 1972, Almann and 
Cracknell 1965): 

(2.15) 

Here the index r represents the combination ( r ,p , i ) ,  where r denotes the irreducible 
representation of the site cubic group Q, p distinguishes between representations that 
occur more than once within a given manifold, and i labels rows of the representation; 
the coefficients UP' are tabulated by Bradley and Cracknell (1972) and by Almann and 
Cracknell (1965). 

A rotation from the standard orientation [ ~ ( v A ) )  to an arbitrary molecular orientation 
( S ~ ' ( U A ) )  may be described by the Euler angles w. It is then found from equation (2.15). 
using equations (2.6) and (2.8), that 

where rotator functions for Centm of type A read 

(2.16) 

(2.17) 
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and ZY,!"'("(o) are the Wigner matrices which govern the transformation of spherical harmonics 
under rotation. It follows from the proportionality of the coefficients $6,. expressed in 
equations (2.13) and (2.14), that orientation-dependent quantities (when the C& molecule 
is treated as a rigid body with atoms, double-bond centres and single-bond centres as 
constituting elements) can be described by a single set of rotator functions which take into 
account both the molecule's symmetry and that of the molecular site within the crystal. 

2.2. Scattering cross sections 

We will now apply these concepts to a formulation of the differential scattering cross section 
per unit solid angle PQ (or 'scattering law') (Lnvesey 1984), 

J R D Copley and K H Michel 

where hQ is the momentum msferred in the scattering process, is the (identical) 
scattering length for centres of type A, and angle brackets denote a thermal average. In the 
case of neutron scattering pa = 4, the scattering length of carbon (which is independent 
of Q)+ whereas pb = ps = 0. For x-rays all centres contribute so that pa.  pb and ps are in 
general non-zero, decreasing with increasing IQI; at Q = 0, PA = z.,re, where ZA is the 
charge at a site of type A in units of the electronic charge, and re is the classical electron 
radius. 

The total differential scattering cross section, equation (218), may be rewritten 

where the molecular structure factor is given by 

F;(Q) = P A  x e x p [ i Q .  d(n, V A ) ) .  
Y" 

This expression is an extension to a complex molecular structure of the rotational structure 
factor described by Press and Huller (1973). Seymour and Pryor (1970). and Rowe et a1 
( 1973). 

Following the procedure of Pick and Yvinec (1980) we now expand the molecular 
Structure factor in terms of molecular rotator functions and obtain 

e r  
(2.21) 

where j t  denotes a Bessel function, and the argument of U; stands for o(n). Note that (for 
a centrosymmetric molecule such as Cm) Fi(Q) is real. and therefore Fi(Q) = Fk(-Q), 
since the allowed values of e are all even. 

The task of computing molecular structure factors F i ( Q )  is considerably simplified 
because the coefficients $6) are proportional to one another for different A. AI1 of the 
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structure factors can therefore be written in terms of ‘atomic’ rotator functions U?; from 
now on we shall drop the superscript a From equation (2.21) we obtain 

FL(Q) = 4n CCP~/t(Qdn)ies,‘(aQ)u~(n) (2.22) 
I T  

where 

A A  ~ ; 4  = P A  w( t t  )st 

and we have introduced the conventions 6; = 1.6; = &, and = <e. 

(2.23) 

3. Differential scattering cross sections 

Having expressed the molecular structure factor FL(Q) in terms of rotator functions 
(equation (2.22)), we now take advantage of symmetry to obtain various contributions to 
the total differential scattering cross section. Equation (219) may be rewritten as the sum 
of two terms: 

do /daq  = (do/daq)lB + (do/d%)la (3.1) 

where the subscripts B and d denote Bragg and diffuse scamring cross sections respectively. 
The Bragg term is 

which reduces to 

(3.3) 

where G is a reciprocal lattice vector and V, is the volume of the primitive unit cell. The 
remaining diffuse term may be broken into a single-molecule ‘self component 

which is independent of n, and a ‘distinct’ component 
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associated with orientational correlations between molecules at different sites. 
In order to proceed we need to calculate the thermal averages which appear in 

equations (3.3H3.5). The intermolecular potential may be written as the sum of a rotation- 
rotation interaction term which is quadratic in the rotator functions U;,  and a crystal field 
term which is linear in these functions. In actual calculations the potential is treated within 
the molecular field approximation. In the disordered phase the single-particle potential at any 
molecular site then reduces to the crystal field potential, which has full cubic symmetry (i.e. 
r = A,,, the unit representation), and can therefore be expanded in cubic rotator functions 
(Michel er ai 1992a). For e > 12 there is more than one AI, representation and we shall 
use the symbol to denote the combination (Alr. f i ) :  p labels the A,, representations. 
The expansion of the crystal field now reads (writing la for @(?a)) 

J R D Copley and K H Michel 

where the coefficients are calculated from microscopic theory. For a complex molecular 
shucture with several types of interaction centre they may be written as 

(3.7) wrll AA'% A A' 
I = 1 2 E V , ,  &go sgn(59. 

A , #  

AA1r IZ  The definition of the quantity ut,, follows from equation (3.17) of Michel (1992a). 
The thermal average of a function Q(o) is defined by 

(Q) = Z-' doQ(o)expI-Vo;(o)/T] (3.8) J 
where the partition function 

Z = doexp[-VcF(O)/TI. (3.9) J 
It follows that 

(U; )  = & , r , * ( U 3  (3.10) 

so that 

(3.11) 

Note that in this and subsequent equations the function S;"(Q) is replaced by the well 
known cubic harmonic K;"(Q) (von der Lage and Bethe 1947, Bradley and Cracknell 
1972, Altmann and Cracknell 1965). Since the crystal field has cubic symmetry, we apply 
a group theoretical matrix element theorem (Tinkham 1964) to obtain 

rut rll';' rlli rpii (3.12) (U ,  U,, ) = 6rr&(Ut U,, ) 

so that 
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3.1. Brogg scattering 

The Bragg scattering intensity for a single crystal is readily obtained by substituting 
equation (3.1 I )  into equation (3.3). The result is that 

Whether or not single crystals are available, useful structural information C a n  also 
be obtained from powder samples, in which the scattered intensity is averaged over all 
directions of Q. We shall denote powder averages by an overbar, i.e., 

where f (S2,)  represents any function which depends on the direction of Q. The powder- 
averaged Bragg scattering intensity is then 

which reduces, in the absence of a crystal field, to 

This expression accounts well for the observed Bragg intensities in room-tempemture x-ray 
and neutron powder diffraction experiments on Cm (Heiney et a1 1991, Fischer eta1 1991, 
Copley et a1 1992a.b); in the case of neutron scattering p i  = (60Ac/&)S,4.,. Notice 
that one should not conclude from these experiments that the crystal field is sBktly zero. 
Indeed recent single-crystal x-ray diffraction experiments (Chow et a1 1992) conclusively 
show that the distribution of orientations of C a  molecules in the disordered phase is not 
completely spherical. 

3.2. Diffuse scattering 

Inserting equations (3.1 I )  and (3.13) into equation (3.4). we find that 

The prime on the sum over e and e' indicates that the e = e' = 0 term is omitted; this 
term vanishes because V;(w) = &,,. All thermal averages in equation (3.18) refer to a 
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single molecular site, and translational invariance of the crystal implies that all sites are 
equivalent. Equation (3.18) is a very general formulation of the single-molecule diffuse 
differential scattering cross section in an orientationally disordered single crystal. 

Since the site symmetry adapted functions S; are orthonormalized, we obtain from 
equation (3.18) that the powder-averaged single-molecule diffuse scattering intensity is 

J R D Copley and K H Michel 

The temperature dependence of this scattering is determined by the saength of the crystal 
field (see equation (3.8)). 

In the absence of a crystal field, lhe orthogonality of the rotator functions implies that 
(U:'*) = 0 for # 0, and that 

( ( u ; ) ~ L ~ = ~  = 1/(2e + I). (3.20) 

Since there are 2e + 1 components of r for a given manifold e, equation (3.19) reduces to 

Using equation (2.23) this expression may be rewritten as follows: 

(3.21) 

(3.22) 

In the case of x-rays all scadenng centres contribute, but for neutrons the only interaction 
is with nuclei and P A  = 8 ~ & .  In this case, using equation (2.10), we find that 

This is the diffuse neutron differential scattering cross section in the absence of a crystal 
field (see also Neumann et a1 1992, Copley et a1 1992a). 

We now turn to the 'distinct' diffuse term, equation (3.5). The principal contributions to 
this scattering arise from order parameter fluctuations which build up as the phase transition 
is approached from above. In view of previous work (Michel et a1 1992) we shall restrict 
our attention to the three components of the dominant Tzg mode belonging to the manifold 
e = 10. The following discussion also holds for Tzg modes belonging to the manifold .! = 
6, and can be extended to linear combinations of T2g modes with e = 6 and e = 10. In 
the disordered phase (U,?) = 0 so that only the 'correlated' part of equation (3.5) remains. 
The leading contribution to the 'distinct' term is therefore given by 
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Here Ulo(q) are the Fourier transforms of the order parameter variables. the indices i and 
j refer to the three components of the dominant Tzg representation, and q = Q - G. 
The correlation function in equation (3.24) is related to the collective order parameter 
susceptibility x(q)  by 

(u;o(~)~;O(-9))7-- I _  - x ij (9) (3.25) 

with (Michel 1992b) 

x(q) = x:;’[T +x; ’J (q ) l - ’ .  (3.26) 

Here J ( q )  is a 3 x 3 interaction matrix and xi:) is the single-pdcle expectation value 

1;: = (3.27) 

The interaction matrix J ( q )  becomes diagonal and has its maximum negative eigenvalue at 
the X point of the Brillouin zone, i.e. for q = kX. Here kx stands for any of the vectors 
k,: = (2n/a,  0, 0). k; = (0, h / a ,  0). and k: = (0, 0,2n/a), where a is the crystal lattice 
constant. Explicitly we find that 

(3.28) 1 ( -B% - B S y z  v c x y  + W y .  + C Z X )  

Y C y ,  + ( I (CZX + G y )  - B & y  -BS, 
-B&, YCn +&, + CJZ) +SYZ .I(@ = 4 

where Cij sin(qia/2) sin(qja/2). The quantities (I, B 
and y in equation (3.28) were originally determined by numerical calculation for the case 
of atom-atom Lennard-Jones potentials between nearest-neighbour molecules (Michel el a1 
1992). Extension of the theory to a more complex structure, including double- and single- 
bond interactions as well as Coulomb interactions within a distribution of electronic charges, 
shows that the structure of the matrix J ( q )  is unaltered (Michel 1992a). Depending on the 
strengths of the various interactions the coefficients IY, ,9 and y take different values, but in 
all cases y >> IY, B. The structure of the matrix J(p) is the same for T a  modes belonging 
to the manifold e = 6. 

cos(qia/2) cos(qja/2) and Sij 

4. Orientational distribution functions 

Orientational density distribution functions can in principle be determined in diffraction 
experiments (Press and Huller 1973, Seymour and Pryor 1970, Rowe er al 1973). Neutron 
diffraction data can be analysed to yield information regarding the thermal average of the 
instantaneous orientational distribution function for nuclei. which may be written (Michel 
and Parlinski 1985) as 

where Cl is the direction of observation, the instantaneous orientation of the molecule is 
described by Euler angles U, and the superscript n denotes nuclear density. This expression 
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generalizes an earlier formulation of the scattering length density which was expanded in 
terms of cubic rotator functions (Press and Huller 1973). The thermally averaged distribution 
function is then given by 

J R D Cnpley and K H Michel 

f"(W = (f"(Q; 4. (4.2) 

f"(Q) = CCy;"'K;ll(Q) (4.3) 

Using equation (3.10) we obtain 

e rlg 

where 

y:"" = g:cul'.,. 

Since KO = I /fi and g:: = 60/&, 

(4.4) 

iply 60/41r. The ..I :first term in equation (4.3) . . . 

coefficients y:"* can be determined from neutron diffraction experiments since the thermal 
averages (U,?) appear in the Bragg differential scattering cross section, equations (3.14) 
and (3.16). On the other hand they can also be calculated if the crystal field, equation (3.6), 
is obtained from a theoretical model. 

We now consider the thermally averaged electron density distribution function, which 
is relevant to the analysis of x-ray experiments, and we start with the charge distribution 
for a molecule in its standard orientation (figure 1): 

where the superscript e denotes electron density. Using concepts developed in section 2 we 
find that 

(4.7) 

where 

(4.8) 

is the 'electron molecular shape factor' for sites of type A (cf equation (223)). The thermally 
averaged electron density distribution is then 

A A  
2: = LA w ( t t  )st 

(4.9) 
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where 

(4. 10) 

The first term in the expansion of fS(P), equation (4.9). is CA zANA/4n = 360/4n. since 
there are six electrons per atom of carbon. 

Our formulation of the thermally averaged nuclear and electronic density distributions, 
f"(S2) and f ' (Q) ,  enables their calculation for a specific microscopic potential model, 
but in practice our current (first-principles) understanding of the intermolecular potential 
is still somewhat incomplete. Molecular dynamics calculations (Cheng and Klein 1992) 
and energy minimization calculations (Guo et al 1991) have shown that Lennard-Jones 
potentials based on atom-atom interactions alone result in non-cubic lattice structures at 
low temperature. (This shortcoming has been avoided in the analytical theory (Michel er al 
1992) by restricting attention to a rigid lattice structure and only allowing the Cso molecule 
to have orientational degrees of freedom.) Following molecular dynamics calculations with 
improved potentials (Sprik et al 1992), it is now commonly accepted that the inclusion of 
double bonds as repulsive interaction centres (David et ul 1991) ensures that the low-T 
structure is cubic. The electronic charge distribution of the molecule, which contributes an 
electrostatic multipole component to the intermolecular potential, may also be taken into 
account (Lu et a! 1992). It has recently been shown (Michel 1992a) that the theory can 
be extended to intermolecular potentials associated with a complex molecular structure. 
Application of the extended theory to various models of the molecular structure shows that 
numerical values of the multipolar intermolecular interaction constants and of the crystal 
field coefficients depend strongly on details of the molecular structure such as the distribution 
of electric charge among bonds and atoms, and the location and strength of Lennard- 
Jones interactions. Given the inherent unceltainties in this parametrization of the molecular 
structure, we prefer here not to use a particular molecular model but rather to discuss the 
dependence of f"(C2) on parameters of the crystal field itself. By parametrizing the crystal 
field we obtain results which can be compared with the results of experiments. Such an 
analysis provides information which can in turn be used to improve our description of the 
molecular interaction potential. 

We have numerically calculated the coefficients y y  for various choices of the crystal 
field parameters wb and wI0 in equation (3.6). using equation (3.8) to calculate the thermal 
average8 entering equation (4.4). Representative results are shown in table 2 and in figure 2, 
expressed in terms of the dimensionless variables 2, = we/T (e = 6 and IO). To a good 
approximation we find that y ,  decreases linearly with increasing $6. and is relatively 
insensitive to &lo. On the other hand yF0 is mostly quadratic in 2 6 ,  and increases with 
decreasing &c,. The behaviour of the coefficients in equation (4.3) is such that f"(S2) 
becomes more isotropic as the temperature is increased. Very similar conclusions apply to 
yp' and to f'(Q), since z f ,  equation (4.8), is dominated by the contribution from atomic 
centres. 

In figure 3 we show the dependence of f(G2). e.g. f"(C2) or fe(S2), on the corresponding 
coefficients yb and no. The orientational density distribution is clearly deficient close to 
the ( I  I I )  direction when y6 is negative and ylo is positive. Furthermore the density in the 
( I  10) direction depends on y6 but is almost independent of y10. Scattering experiments 
provide important information about the coefficients ye, information which in turn improves 
our understanding of the intermolecular potential. 
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Table 2. The coefficients y l  and y& caiculaled for the indicated values of the dimensionless 
p m e t e r s  4 sz u s / T  and 6 1 0  G w m / T .  Note that ~ 0 "  = 60/& = 16.926. 

-4.0 -0.4 0.64 1.58 
0.0 0.62 1.31 
0.4 0.59 1.M 

-2.0 -0.4 0.38 0.73 
0.0 0.36 0.43 
0.4 0.34 0.13 

0.0 -0.4 0.00 0.38 
0.0 0.00 0.00 
0.4 0.00 -0.36 

2.0 -0.4 -0.41 1.05 
0.0 -0.38 0.51 
0.4 -0.36 -0.02 

4.0 -0.4 -0.72 2.50 
0.0 -0.68 1.79 
0.4 -0.64 1.14 

The crystal field coefficient W6 is sensitive to certain aspects of our model of the 
molecular interaction potential. From equation (3.7) we obtain the result, for e = 6 or 12, 
that 

hbrll + 2gg;u;F + (g," - 2g,)u,, b obrc + 2(g; + g:)Q 

(4.11) 

(The same expression holds for t  = 10, except that all signs are positive.) Inserting numerical 
values of the molecular shape factors g: from table 1 (model 2), we find that 

w6 = (%)[5.12ug - 6.33u,hh,+22.78~& - lO.lOu,"b,+27.9Ou~Sg - 1.27u&I; (4.12) 

the superscript qg is dropped because there is only one A], representation for e = 6. 
Since the c60 molecule is electrically neutral, Coulomb interactions do not contribute to 
the crystal field. Furthennore the Lennard-Jones potential is such that all elements U#' 
have the same (negative) sign. Thus w6 is always negative in the absence of double-bond 
interaction centres whereas such centres give a positive contribution to wg because of the 
negative signs in equation (4.1 1). In the absence of single-bond centres, and under the 
plausible assumption (Sprik et a1 1992) that double-bond centres contribute strongly to the 
repulsive interaction, the latter centres cause W6 to be positive. Since single-bond centres 
always produce a negative contribution to ws, we see that the sign of W6 largely depends 
on the interplay between double- and single-bond centre interactions. The coefficients U$' 
are very sensitive to parameters of the corresponding Lennard-Jones potentials. On the 
other hand we find that for all models studied, and for all plausible choices of potential 
parameters, 1010 is negative. 

Recently Chow er ai (1992) have measured x-ray Bragg peak intensities in a single 
crystal of C.W at 300 K. The measurements were analysed to extract the coefficients y;"' 
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in the expansion of the electron orientational distribution function, equation (4.9). It was 
found that y; is negative, which suggests that the coefficient ws in the effectivecrystal field 
potential is positive, confirming the importance of double-bond c e n m  in our model of the 
intermolecular potential. With wlo < 0 and w6 z 0, we deduce from figure 2 that ylo is 
positive, in agreement with Chow et a1 (1992). 

5. Concluding remarks 

Using the formalism of molecular and site symmetry adapted rotator functions, we have 
derived expressions for differential cross sections for neutron and x-ray scattering in the 
orientationally disordered phase of solid &. We have given expressions for Bragg 
scattering and diffuse scattering for the cases of single crystals and powder samples. The 
single-particle orientational distribution function has been discussed, and the dependence of 
its first two coefficients on crystal field parameters has been examined. 

We have restricted our treatment to orientational degrees of freedom and have assumed 
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0 (degrees) 

Figure 3. Plofs of ihe normalized orientational distribution function, (4n/60) I@), for four 
choices of the coefficients yt: MI = Solfi .  Full curve, yb = -0.4. YID = 0.R doMd c w e .  
ye = 4.4, yIo = 0.R broken curve. y6 = 0.0, ylo = -0.4; chain curve, y6 = 0.0, YIO = 4.4. 
~ t r e  function is plotted in ik [ I  io] plane as a function of the polar angle 8. with = 450. 
The crystallographic directions (001). ( 1 1 1 )  and (110) correspond to 6 = O', 54.7' and 90° 
respectively. 

that molecular centres lie on a rigid lattice. This assumption is certainly justified as a first 
approximation. Indeed at the X point of the Brillouin zone there is no coupling between 
acoustic lattice displacements and orientational order parameter fluctuations. (Acoustic 
lattice displacements couple to the square of the Tzg order parameter fluctuations (Lamoen 
and Michel 1993). causing the cubic cell constant to contract at the first-order phase 
transition (David ef a1 1992, Heiney et al 1992).) The absence of bilinear coupling 
implies that we do not need to include mixed translation-rotation correlation functions 
in the scattering cross sections. 

As we have pointed out in section 4, the orientational distribution function in the 
disordered phase of C, is determined by the coefficients w? of the crystal field. We 
have given expressions for w;" in terms of the distribution and strength of the interaction 
centres of the molecule. Since our knowledge in this matter is somewhat incomplete, 
ah inirio calculations of the electronic structure of the molecule should help to provide a 
more reliable parametrization of the intermolecular potential. However even at present our 
analysis indicates that double-bond interaction centres, which were initially introduced to 
explain structural data at low temperature (David ef a1 1991), play an important role in 
determining the orientational distribution in the high-T phase. 

There is a fundamental reason why a theoretical calculation of the single-particle 
orientational dishibution function is an extremely difficult challenge. The field experienced 
by a rotating molecule within a crystal actually includes contributions from all degrees 
of freedom in the clystal. In particular the selfenergy of a rotating molecule in a 
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deformable lattice yields important conhibutions to the effective crystal potential, in addition 
to those obtained in the case of a rigid lattice (Michel and Rowe 1985). On the other 
hand characteristic properties at phase transitions only depend on a few relevant degrees 
of freedom. As a more direct test of theoretical concepts (Michel el a1 1992 Michel 
3992b). and in particular of expression (3.24). we encourage and look forward to a detailed 
investigation of the static collective orientational susceptibility in a single crystal of at 
a temperature close to that of the orientational phase transition. 
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